SPARK CSV application instance and best practice score
In Spark, CSV files are a common data format, and Spark provides a flexible and efficient way to process and analyze these files.This article will introduce the application instance and best practice of Spark CSV, and provide some Java code examples.
1. Import dependencies
To use Spark CSV, we need to introduce related dependencies in the project.In the Maven project, you can add the following dependencies to the pom.xml file:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.0.1</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.12</artifactId>
<version>1.5.0</version>
</dependency>
2. Read the CSV file
In Spark, you can use the `SparkSession" object to read the CSV file.The following code demonstrates how to read a CSV file called `data.csv`
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
public class CSVExample {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.appName("CSV Example")
.master("local")
.getOrCreate();
Dataset<Row> dataset = spark.read()
.format("csv")
.opting ("header", true) // If the CSV file contains the title line, please set it to true
.load("data.csv");
dataset.show();
}
}
In this example, we first created an `SparkSession" object and specify the name of the application and the master url.Then, use the `spark.read ()` method to load data in CSV format, and specify the CSV file to include the title line by setting the `Option (" Header ", TRUE)`.Finally, use the `show ()` method to display the read data.
3. Write into CSV files
In addition to reading CSV files, Spark can also write data into CSV format.The following code demonstration how to write a `dataset <row>` `Output.csv` file:
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
public class CSVExample {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.appName("CSV Example")
.master("local")
.getOrCreate();
Dataset<Row> dataset = spark.read()
.format("csv")
.option("header", true)
.load("data.csv");
// Data conversion and processing
dataset.write()
.format("csv")
.option("header", true)
.mode("overwrite")
.save("output.csv");
}
}
In this example, we first read a CSV file and transformed and processed the data.Then, use the `write ()` method to write the data into the CSV format, and specify the written file to include the title line by setting the files by setting the `Option (" Header ", TRUE)`.In addition, `Mode (" OverWrite ")` means that if the file exists, it will cover the original file; if this option is not set, the default behavior is added to the original file.
These are some examples of Spark CSV applications and best practice.In actual applications, you can perform more data conversion, processing and analysis of more data conversion, processing and analysis according to your needs.