python import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize def text_mining(text): text = text.lower() tokens = word_tokenize(text) stop_words = set(stopwords.words('english')) filtered_tokens = [word for word in tokens if word not in stop_words] word_freq = nltk.FreqDist(filtered_tokens) return word_freq text = "This is an example text for text mining. We will analyze the frequency of words in this text." word_freq = text_mining(text) for word, freq in word_freq.items(): print(word, freq) python import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') image = cv2.imread('image.jpg') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5) for (x, y, w, h) in faces: cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 3) cv2.imshow('Face Detection', image) cv2.waitKey(0) cv2.destroyAllWindows()


上一篇:
下一篇:
切换中文