python import numpy as np from mvpa2.suite import * n_samples = 100 n_features = 10 X = np.random.randn(n_samples, n_features) y = np.random.randint(0, 2, n_samples) clf = LinearCSVMC() dataset = Dataset(X, sa={'targets': y}) selector = SensitivityBasedFeatureSelection( OneWayAnova(), FixedNElementTailSelector(3, mode='select', tail='upper')) selected_dataset = selector(dataset) clf.train(selected_dataset) new_sample = np.random.randn(1, n_features) prediction = clf.predict(new_sample)


上一篇:
下一篇:
切换中文