import numpy as np import tensorflow as tf import skflow x_train = np.array([[1], [2], [3], [4]]) y_train = np.array([[2], [4], [6], [8]]) linear_regressor = skflow.LinearRegressor(feature_columns=[tf.contrib.layers.real_valued_column("", dimension=1)]) linear_regressor.fit(X=x_train, y=y_train, steps=1000) x_test = np.array([[5], [6]]) predictions = list(linear_regressor.predict(x_test)) for i, p in enumerate(predictions):


上一篇:
下一篇:
切换中文