1. Scikit-learn: python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) print(y_pred) 2. TensorFlow: python import tensorflow as tf from tensorflow.keras import layers model = tf.keras.Sequential([ layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test)) loss, acc = model.evaluate(X_test, y_test) predictions = model.predict(X_test) print(predictions) 3. NLTK: python import nltk nltk.download('averaged_perceptron_tagger') tokens = nltk.word_tokenize(text) print(tokens) tagged = nltk.pos_tag(tokens) print(tagged)


上一篇:
下一篇:
切换中文