How to solve common problems encountered when using Jackson DataFormat: Avro framework
When using Jackson DataFormat: AVRO framework, some common problems may be encountered.This article will introduce these issues and provide some solutions and Java code examples.
1. Question: AVRO mode file failed loading
When using the Jackson DataFormat: Avro framework, the problem that cannot be loaded with the AVRO mode file may be encountered.
solution:
Make sure that the AVRO mode file exists and set its path correctly.
ObjectMapper mapper = new ObjectMapper(new AvroFactory());
// Load the AVRO mode file
mapper.writer(new AvroSchema(AvroUtils.parseSchema(new File("path/to/avro_schema.avsc"))));
2. Question: The generated avro data is not serialized as expected
When using Jackson DataFormat: AVRO framework for serialization, the generated AVRO data may not match the expected.
solution:
Make sure that the Java object to be serialized is matched with the AVRO mode and correctly map the field.
// Define the Java object
public class Person {
private String name;
private int age;
// You must provide a non -ginseng constructor function
public Person() {}
// getters 和 setters ...
}
// Create avro data
Person person = new Person();
person.setName("John");
person.setAge(30);
// Sequences to AVRO data
byte[] avroData = mapper.writer().withType(Person.class).writeValueAsBytes(person);
3. Question: The AVRO data can be transformed into Java objects
When using the Jackson DataFormat: AVRO framework for counter -sequence, it is possible to encounter the problem that the AVRO data can be transformed into a Java object.
solution:
Make sure that the AVRO data that needs to be carried out is matched with the Java object type, and the AVRO mode file is set correctly.
// Revitalize AVRO data
Person deserializedPerson = mapper.reader().forType(Person.class).withType(Person.class).readValue(avroData);
4. Question: Low serialization/derivativeization performance is low
During the large -scale data processing process, the performance of using Jackson DataFormat: AVRO framework may be lower.
solution:
Consider using buffer and batch processing to improve performance.You can adjust it by covering the default configuration.
// Use buffer and batch processing
ObjectMapper mapper = new ObjectMapper(new AvroFactory()
.configure(AvroParser.Feature.READ_BUFFER_SIZE, 16384)
.configure(AvroGenerator.Feature.WRITE_BUFFER_SIZE, 16384)
.configure(SerializationFeature.WRITE_SINGLE_ELEM_ARRAYS_UNWRAPPED, true));
5. Question: Use the custom serializer/back -sequencer
In some cases, the serializer and dependent serializer of AVRO data may be required.
solution:
Implementing `com.fasterxml.jackson.dataBind.Ser.StdSerializer` and` com.fasterxml.jackson.dataBind.std.stddeserializer` interfaces to create custom serializers and risks, and use `@` `JSONSERIALIZE` and `@jsondeserialize` annotations are applied to the Java object.
// Custom serializer
public class CustomSerializer extends StdSerializer<Person> {
// Constructor
public CustomSerializer() {
super(Person.class);
}
// serialization method
public void serialize(Person person, JsonGenerator gen, SerializerProvider provider) throws IOException {
// Customized serialization logic ...
}
}
/ Third
public class CustomDeserializer extends StdDeserializer<Person> {
// Constructor
public CustomDeserializer() {
super(Person.class);
}
// Revitalization method
public Person deserialize(JsonParser parser, DeserializationContext context) throws IOException {
// Customize the logic ...
}
}
// Apply a custom serializer and a rotor serializer
@JsonSerialize(using = CustomSerializer.class)
@JsonDeserialize(using = CustomDeserializer.class)
public class Person {
// ...
}
These are some common problems and solutions that may encounter when using Jackson DataFormat: Avro framework.By checking the code and adjusting the configuration, you should be able to successfully use AVRO for serialization and derivativeization.