python import pandas as pd dataframe = pd.read_csv('data.csv') dataframe = pd.read_excel('data.xlsx') sql_query = 'SELECT * FROM table' dataframe = pd.read_sql(sql_query, connection) python python python from sklearn.feature_extraction.text import CountVectorizer corpus = ['This is the first document.', 'This document is the second document.'] vectorizer = CountVectorizer() X = vectorizer.fit_transform(corpus) from sklearn.feature_selection import SelectKBest, f_classif selector = SelectKBest(f_classif, k=20) X_selected = selector.fit_transform(X, y) python from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) python from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']} svm_model = SVC() grid_search = GridSearchCV(estimator=svm_model, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ best_score = grid_search.best_score_ python import nltk text = 'This is a sentence.' tokens = nltk.word_tokenize(text) pos_tags = nltk.pos_tag(tokens) python from nltk.classify import NaiveBayesClassifier from nltk.sentiment import SentimentIntensityAnalyzer train_data = [('Text 1', 'Category 1'), ('Text 2', 'Category 2')] classifier = NaiveBayesClassifier.train(train_data) text = 'This is a test text.' category = classifier.classify(text) sia = SentimentIntensityAnalyzer() sentiment_scores = sia.polarity_scores(text) python from nltk.sem import relextract from nltk.chunk import ne_chunk text = 'John loves Mary.' tree = nltk.ParentedTree.fromstring('(S (NP (NNP John)) (VP (VBZ loves) (NP (NNP Mary))))') relextract.tree2semi_rel(tree) text = 'John works at Google.' tokens = nltk.word_tokenize(text) ne_chunks = ne_chunk(nltk.pos_tag(tokens))


上一篇:
下一篇:
切换中文