<dependencies>
<dependency>
<groupId>com.github.sd-nyzh</groupId>
<artifactId>tjungblut-math</artifactId>
<version>0.1.0</version>
</dependency>
</dependencies>
import de.jungblut.math.DoubleVector;
import de.jungblut.math.MathUtils;
DoubleVector vector1 = new DoubleVector(1.0, 2.0, 3.0);
DoubleVector vector2 = new DoubleVector(4.0, 5.0, 6.0);
double dotProduct = MathUtils.dot(vector1, vector2);
import de.jungblut.math.DoubleMatrix;
import de.jungblut.math.MathUtils;
DoubleMatrix matrix1 = new DoubleMatrix(new double[][]{{1.0, 2.0}, {3.0, 4.0}});
DoubleMatrix matrix2 = new DoubleMatrix(new double[][]{{5.0, 6.0}, {7.0, 8.0}});
DoubleMatrix productMatrix = MathUtils.multiply(matrix1, matrix2);
" + productMatrix);
import de.jungblut.clustering.KMeansClustering;
import de.jungblut.math.DoubleVector;
import de.jungblut.math.MathUtils;
List<DoubleVector> dataPoints = new ArrayList<>();
dataPoints.add(new DoubleVector(1.0, 2.0));
dataPoints.add(new DoubleVector(2.0, 1.0));
dataPoints.add(new DoubleVector(5.0, 6.0));
dataPoints.add(new DoubleVector(6.0, 5.0));
int numClusters = 2;
int numIterations = 10;
KMeansClustering clustering = new KMeansClustering(numClusters, numIterations);
List<DoubleVector> centroids = clustering.cluster(dataPoints);