python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) accuracy = (y_pred == y_test).mean() python import tensorflow as tf from tensorflow.keras.datasets import mnist (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(-1, 28*28) / 255.0 X_test = X_test.reshape(-1, 28*28) / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Dense(128, activation='relu', input_shape=(28*28,)), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, epochs=5) loss, accuracy = model.evaluate(X_test, y_test) python import nltk from nltk.corpus import gutenberg from nltk.tokenize import sent_tokenize nltk.download('gutenberg') corpus = gutenberg.raw('bible-kjv.txt') sentences = sent_tokenize(corpus) for i in range(5): print(sentences[i])


上一篇:
下一篇:
切换中文